Момент инерции
Кто из нас не следил с удивлением и восторгом за тем, как эффектно фигуристы заканчивают свои выступления на ледяной арене? Они начинают вращаться, зафиксировав центр вращения одним коньком и отталкиваясь другим, широко разведя руки в стороны, достигают достаточно большой угловой скорости вращения, а затем быстро прижимают руки к телу. После этого их угловая скорость вращения резко возрастает.
В чем же тут дело? Почему, лишь прижав руки к телу и не прикладывая больше никаких усилий, фигуристу удается резко увеличить угловую скорость своего вращения? Не опровергается ли этим закон сохранения энергии? Конечно, нет. Объяснение описанного явления дает один из разделов ньютоновской механики — динамика твердого тела. Под твердым телом при этом понимается система частиц, взаимные расстояния между которыми не изменяются.
Оказывается, несмотря на сложность задачи о вращательном движении твердого тела, её можно свести к решению уравнений, по форме аналогичных уравнениям Ньютона для поступательного движения. Роль ускорения, силы и массы в этом случае играют угловое ускорение, момент силы и момент инерции. С этими важными понятиями можно познакомиться на простом примере движения одной материальной точки A массой m, которая удерживается на окружности радиуса r с помощью невесомого стержня. Пусть на точку $A$ действует постоянная сила $\overrightarrow{F}.$ Если в данный момент она составляет угол $α$ с радиус-вектором материальной точки $A,$ то её составляющая $F_r=F⋅\cos α$ просто сжимает стержень, а составляющая $F_t=F⋅\sin α$ приводит к появлению тангенциального ускорения $a_t,$ изменяющего величину скорости частицы. (Это ускорение направлено по касательной к траектории частицы. Его следует отличать от центростремительного ускорения, которое всегда направлено к центру вращения и меняет лишь направление вектора скорости частицы.)
Согласно второму закону Ньютона, для тангенциального ускорения можно записать:
$m⋅a_t=F_t=F⋅\sin α.$По аналогии с угловой скоростью введем угловое ускорение $ε=\frac{a_t}{r}.$ Оно характеризует скорость изменения угловой скоростиω со временем. Тогда равенство (1) будет иметь вид:
$F⋅\sin α=m⋅r⋅\frac{a_t}{r}=m⋅r⋅ε.$Умножив обе части этого уравнения на радиус, получим:
$F⋅r⋅\sin α=m⋅r^2⋅ε,$или $M=J⋅ε.$
Величина $M=F⋅r⋅\sin α,$ численно равная произведению силы $F$ на длину перпендикуляра $d=r⋅\sin α,$ опущенного на направление силы из центра вращения (плечо силы), называется моментом силы относительно точки $O.$ Величину $J=m⋅r^2,$ равную произведению массы материальной точки $A$ на квадрат её расстояния до центра вращения, называют моментом инерции материальной точки относительно точки $O.$
В случае произвольного твердого тела момент инерции характеризуется распределением массы в этом теле и определяется суммой моментов инерции совокупности материальных точек, на которые можно разбить твердое тело:
$J=\sum\limits_{i=1}^{N}{\Delta {{m}_{i}}r_{i}^{2}},$где $Δm_i$ — масса $i$‑й точки, $r_i$ — её расстояние до оси вращения.
Момент инерции служит мерой инертности тела при вращении и, таким образом, играет ту же роль, что и масса в случае поступательного движения. Однако в отличие от массы тела, которая при обычных условиях остается неизменной, момент инерции можно легко менять. Действительно, даже в рассмотренном выше простейшем случае материальной точки на стержне момент инерции зависел не только от величины массы, но и от того, как далеко она расположена от оси вращения. Поэтому, перемещая материальную точку по стержню от центра вращения, можно увеличивать инерцию вращения такой системы.
В зависимости от формы и выбранной оси вращения твердые тела одной и той же массы могут иметь различные моменты инерции. Так, момент инерции полого цилиндра радиуса $r$ относительно его оси симметрии равен $mr^2;$ однородного шара, вращающегося относительно оси, проходящей через его центр, — $\frac{2}{5}mr^2;$ однородного цилиндра, вращающегося относительно своей оси симметрии, — $\frac{1}{2}mr^2.$
И момент силы $\overrightarrow{M},$ и угловая скорость $\overrightarrow{ω},$ и угловое ускорение $\overrightarrow{ε}$ так же как и соответствующие им величины силы, скорости и ускорения при описании поступательного движения, являются векторами. Эти векторы направлены вдоль оси вращения (аксиальные векторы), причем их направление определяется по правилу буравчика, т. е. совпадает с направлением поступательного движения буравчика, рукоятка которого вращается в том же направлении, что и тело.
Можно ввести еще один важный вектор: $L=J⋅\overrightarrow{ω},$ называемый моментом количества движения. Являясь аналогом импульса для вращательного движения, он обладает замечательным свойством: момент количества движения замкнутой системы остается постоянным по величине и направлению. Изменяется он только под воздействием приложенных к рассматриваемой системе нескомпенсированных моментов внешних сил.
Вернемся снова к началу этой статьи, где рассказывалось о вращающемся фигуристе. Пренебрегая малыми моментами действующих на него сил сопротивления, можно считать, что он представляет собой замкнутую систему. Поэтому достигнутый им при начальном разгоне момент количества движения $J_1⋅\overrightarrow{ω_1}$ должен сохраняться ($ω_1$ — его начальная угловая скорость, $J_1$ — момент инерции в положении с разведенными руками). Прижимая руки к телу, фигурист, очевидно, уменьшает свой момент инерции до некоторой величины $J_2$ и тем самым увеличивает свою угловую скорость: $ω_2=\frac{J_1}{J_2}.$ Однако в этот момент ему приходится «поработать», так как начальная кинетическая энергия его вращения была $\frac{J_1⋅ω_1^2}{2},$ а конечная становится $\frac{J_2⋅ω_2^2}{2}.$ Разность этих энергий и составляет величину работы фигуриста.