ФИГУРНЫЕ ЧИСЛА
Про числа 25, 49, 100 говорят, что они являются квадратами. А почему? Потому что они получаются, если возвести числа 5, 7 и 10 в квадрат. Но имеет ли это название какое-нибудь отношение к геометрической фигуре-квадрату? Посмотрим на рис. 1. Солдаты стоят правильными рядами, образуя квадраты. Число солдат внутри такого квадрата легко подсчитать - нужно умножить их число вдоль горизонтальной стороны на число солдат вдоль вертикальной стороны (заметим, что эти числа равны), и получится общее количество солдат внутри квадрата.
В древности вычислители часто считали с помощью камешков и, естественно, отмечали случаи, когда камешки можно было сложить в виде-правильной фигуры. Кроме квадратных чисел были известны треугольные числа, которые получаются так, как это показано на рис. 2 в верхней его части. Нетрудно заметить, что n-е квадратное число равно n2, а n-е треугольное число равно сумме всех
целых чисел от 1 до n, т.е. n(n + 1)/2 (см. Арифметическая прогрессия).
Пятиугольные числа изображены на рис. 2. Чтобы сосчитать n-е пятиугольное число, его нужно разбить на три треугольных, после чего останется еще n точек, как показано на рисунке. В результате получаем, что n-е пятиугольное число равно n + 3n(n - 1)/2
Подобным образом можно образовывать любые многоугольные числа. Формула для n-го k-угольного числа такова:
Pnk = n + (k - 2) n(n - 1)/2.
При k = 3 мы получаем треугольные числа, при k = 4 - квадратные и т.д.
Аналогично можно представить число в виде прямоугольника. Для числа 12 это можно сделать многими способами (рис. 2), а для числа 13 - лишь расположив все предметы в одну линию. Такое число древние не считали прямоугольным. Таким образом, прямоугольными числами являются все составные числа, а непрямоугольными - простые числа.
К фигурным числам также относятся пирамидальные числа, которые получаются, если шарики складывать пирамидой, как раньше складывали ядра около пушки. Нетрудно заметить, что n-е пирамидальное число равно сумме всех треугольных чисел - от первого до n-го. Формула для вычисления n-го пирамидального числа имеет вид
nn = n(n + 1)(n + 2)/6.