Оптические приборы
Оптические приборы открыли человеку два полярных по масштабам мира — космический с его огромными протяженностями и микроскопический, населенный мельчайшими организмами. Телевизионная передача, демонстрация кинофильма, быстрая съемка рельефа местности, точное измерение расстояний и скоростей возможны только благодаря использованию оптических приборов.
Наиболее распространены приборы, формирующие изображения. Это телескоп и бинокль, микроскоп и лупа, фотоаппарат и диапроектор… Проекционный аппарат — один из самых характерных приборов, формирующих изображение (рис. 1). Если проекционный аппарат приспособлен для показа кино, его называют киноаппаратом. Если же он используется для демонстрации диапозитивов, то это диапроектор. В диапроекторе прозрачный снимок — диапозитив Д, освещенный светом конденсора К, помещают вблизи фокальной плоскости объектива так, чтобы на экране получалось четкое изображение. Размер изображения зависит от расстояния проектора от экрана. При изменении этого расстояния необходимо менять и положение объектива относительно диапозитива. Если вместо экрана поставить освещенный предмет, то он изобразится в месте расположения диапозитива. Теперь, если вместо диапозитива поставить пленку и убрать конденсор, получается схема фотоаппарата.
Оптическая схема глаза человека также напоминает схему фотоаппарата. Глаз формирует изображение на своей сетчатке. Размеры изображения предмета на сетчатке глаза зависят оттого, под каким углом мы видим предмет. Так, угловой диаметр Солнца 32′. Этим углом и определяется размер изображения Солнца на сетчатке. Когда две крайние точки предмета видны под углом, меньшим 1′, они сливаются на сетчатой оболочке и предмет представляется наблюдателю точкой. В этом случае говорят, что разрешающая способность глаза не превышает одной угловой минуты.
Телескоп дает возможность увеличивать угол, под которым виден отдаленный предмет. Первый телескоп создал в начале XVII в. Г. Галилей. Опишем ход лучей от удаленного предмета в современной зрительной трубе. От крайних точек предмета на объектив падают параллельные лучи и очерчивают контур предмета в фокальной плоскости. Через окуляр изображение рассматривается под углом φu, большим, чем φn, под которым виден предмет невооруженным глазом. Угловое увеличение телескопа φu / φn = γ1 / γ2. Оптическая схема, приведенная на рис. 2, — это схема рефрактора — телескопа с линзовым объективом. Телескоп с зеркальным объективом называют рефлектором или отражательным телесколом. Впервые рефлектор был построен И. Ньютоном в 1668 г. (рис. 3).
Телескоп с диаметром объектива D позволяет наблюдать предметы или точки предмета, находящиеся на угловом расстоянии 1,22λ / D = 140″ / D, если считать, что длина световой волны, испускаемой объектом, λ = 0,5 мкм. Получается, что чем больше диаметр телескопа, тем более мелкие детали объекта различимы с его помощью. У самых больших рефракторов диаметр объектива не превышает 1 м. Технически проще изготовить зеркало большого диаметра и построить рефлектор.
Огромный телескоп с 6‑метровым зеркалом был построен в СССР. Долгое время он оставался самым большим в мире. Предназначен он для наблюдения переменных галактик, пульсаров, квазаров и других космических объектов.
Чтобы рассмотреть малый предмет под большим углом, его подносят как можно ближе к глазу. Однако глазной хрусталик отчетливо изображает предмет на сетчатке, если он помещен не ближе 10 см от глаза. При меньших расстояниях максимальная кривизна хрусталика оказывается недостаточной для получения четкого изображения на сетчатке. Поэтому очень малые предметы рассматривают через лупу или микроскоп — приборы, увеличивающие угол, под которым виден предмет. Лупы, изобретенные в XVII в. нидерландским естествоиспытателем А. Левенгуком, первооткрывателем мира микроорганизмов, давали увеличение в 300 раз. Схема микроскопа была усовершенствована в 1660‑х гг. английским ученым Р. Гуком. Но до 20‑х гг. XIX в. микроскопы не могли конкурировать с очень хорошими лупами. Прогресс был достигнут благодаря разработке сложных объективов из многих линз. Минимальные размеры предмета, различимого в микроскоп, определяются зависимостью: d = 0,5λ/А. Здесь А — постоянная, равная примерно 1. Для зелёного света d = 0,3 мкм. Чтобы предмет был виден под углом 1′, достаточно увеличение в 1000 раз.
Спектральные оптические приборы предназначены для исследования спектрального состава света. Они играют важную роль в развитии науки и применяются как для изучения процессов, протекающих в микромире, так и для прикладных целей. Например, с помощью современной спектральной аппаратуры можно судить о форме атомного ядра и производить точный элементный анализ вещества. Пример спектрального прибора — спектроскоп (рис. 4), в котором спектр излучения можно наблюдать визуально. Основная часть спектроскопа — призма или дифракционная решетка. Исследуемое излучение линза собирает на щели коллиматора — устройства, формирующего пучок света малой расходимости — «параллельный» пучок. Пройдя сквозь призму, такой пучок превращается в n пучков, идущих под разными углами, если излучение состоит из электромагнитных волн с длинами λ1, λ2, …,λn. Линза Л2 на экране даст n изображений щели А, которые и образуют спектр. Когда требуется изучить «почти» монохроматическое излучение, например спектральный состав одной линии, последовательно со спектроскопическим призменным прибором устанавливают прибор большой разрешающей силы. Без предварительного разложения света приборы высокого разрешения применять нельзя, потому что они могут работать только в очень узком диапазоне длин волн.
Создание лазеров открыло новые пути в оптическом приборостроении. Современные лазерные гироскопы способны работать при высоких механических перегрузках, их можно устанавливать на ракетах, космических кораблях. Построены лазерные магнитометры для измерения слабых магнитных полей, приборы для измерения распределения частиц по скоростям и размерам. Успешно используются для различных целей лазерные оптические локаторы (рис. 5). Высокая яркость лазерного излучения дает возможность передавать его на большие расстояния, а малая длительность лазерного импульса обеспечивает исключительную точность измерения расстояний. Интересно устроен лазерный измеритель скоростей (рис. 6). Отраженный от движущейся частицы, лазерный свет изменит свою частоту колебаний. При обычных скоростях это изменение, обусловленное эффектом Доплера, ничтожно. И все же благодаря высокой стабильности фазы и монохроматичности лазерного света его удается измерить, а по измеренной величине определить скорость частицы, например движущейся в турбулентном потоке жидкости (см. Турбулентность) .
Физики и инженеры разрабатывают оптическую вычислительную машину. Проектная мощность её в десятки раз больше, чем у существующих ныне самых «быстрых» компьютеров. Основой такой машины станут лазерные устройства. И память у нее будет оптической, основанной на голографической записи данных (см. Голография). С помощью голографической оптики выполняются сегодня сложные математические расчеты, дифференцирование функций, интегральные операции, решаются сложнейшие уравнения. Оптические элементы — составная часть конструкции многих приборов. Так, управляемые оптические транспаранты дают возможность изображение, полученное с помощью не воспринимаемого глазом электромагнитного излучения, преобразовать в видимое излучение. Оптические приборы, основанные на волоконной оптике, позволяют осматривать внутренние органы человека и предотвращать тяжелые заболевания.
Итак, современные оптические приборы совершенно необходимы и широко используются во многих отраслях народного хозяйства, в научных исследованиях.