КОСИНУСОВ ТЕОРЕМА

Материал из Юнциклопедии
Перейти к: навигация, поиск

Более 400 каналов всего за 1$ в месяц! Качество, как со спутника, выгодная замена кабельному. Просмотр на смартфоне (Perfect Player), компьютере (IP-TV Player), Smart TV или через IPTV-приставку на любом телевизоре. Россия, Украина, Грузия, США и многое другое в одном пакете.

Косинусов теорема теорема тригонометрии, выражающая зависимость между сторонами и углами треугольника. Она утверждает, что во всяком треугольнике квадрат длины стороны равен сумме квадратов длин двух других сторон без удвоенного произведения длин этих сторон на косинус угла между ними, т.е. в треугольнике ABC (см. рис.) имеет место соотношение

с2 = а2 + b2 - 2ab cos С,

где а, b, с-длины сторон треугольника, а С - величина угла, противолежащего стороне с. Если угол С прямой, то теорема косинусов переходит в Пифагора теорему, так как косинус прямого угла равен нулю. Теорема косинусов чаще всего применяется в двух случаях: 1) если нужно узнагь длину одной из сторон при известных длинах двух других сторон и величине угла между ними; 2) если нужно узнать величины углов треугольника, длины сторон которого известны.

Теорему знали еще древние греки, ее доказательство содержится во II книге «Начал» Евклида (см. Евклид и его «Начала»).