ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Материал из Юнциклопедии
Перейти к: навигация, поиск

Элементарными называют частицы, у которых на данный момент не обнаружено внутренней структуры. Еще в прошлом веке элементарными частицами считались атомы. Их внутренняя структура — ядра и электроны — была обнаружена в начале XX в. в опытах Э. Резер-форда. Размер атомов — около 10-8 см, ядер — в десятки тысяч раз меньше, а размер электронов совсем мал. Он меньше чем 10-16 см, как это следует из современных теорий и экспериментов.

Таким образом, сейчас электрон — элементарная частица. Что касается ядер, то их внутренняя структура обнаружилась вскоре после их открытия. Они состоят из нуклонов — протонов и нейтронов. Ядра довольно плотные: среднее расстояние между нуклонами всего в несколько раз больше их собственного размера. Для того чтобы выяснить, из чего состоят нуклоны, понадобилось около полувека, правда, при этом заодно появились и были разрешены и другие загадки природы.

Нуклоны состоят из трех кварков, которые элементарны с той же точностью, что и электрон, т. е. их радиус меньше 10-16 см. Радиус нуклонов — размер области, занимаемой кварками, — около 10-13 см. Нуклоны принадлежат к большому семейству частиц — барионов, составленных из трех различных (или одинаковых) кварков. Кварки могут по-разному связываться в тройки, и это определяет различия в свойствах бариона, например он может иметь различный спин.

Кроме того, кварки могут соединяться в пары — мезоны, состоящие из кварка и антикварка. Спин мезонов принимает целые значения, в то время как для барионов он принимает полуцелые значения. Вместе барионы и мезоны называются адронами.

В свободном виде кварки не найдены, и согласно принятым в настоящее время представлениям они могут существовать только в виде адронов. До открытия кварков некоторое время адроны считались элементарными частицами (и такое их название еще довольно часто встречается в литературе).

Первым экспериментальным указанием на составную структуру адронов были опыты по рассеянию электронов на протонах на линейном ускорителе в Станфорде (США), которые можно было объяснить, лишь предположив наличие внутри протона каких-то точечных объектов. Вскоре стало ясно, что это — кварки, существование которых предполагалось еще ранее теоретиками.

Здесь представлена таблица современных элементарных частиц. Кроме шести видов кварков (в опытах пока проявляются только пять, но теоретики предполагают, что есть и шестой) в этой таблице приведены лептоны — частицы, к семье которых принадлежит и электрон. Еще в этой семье обнаружены м ю о н и (совсем недавно) тау-лептон (τ-лептон). У каждого из них есть свое нейтрино, так что лептоны естественным образом разбиваются на три пары: е, νe; μ, νμ; τ, ντ.

Каждая из этих пар объединяется с соответствующей парой кварков в четверку, которая называется поколением. Свойства частиц повторяются из поколения в поколение, как это видно из таблицы. Отличаются лишь массы: второе поколение тяжелее первого, а третье поколение тяжелее второго.

В природе встречаются в основном частицы первого поколения, а остальные создаются искусственно на ускорителях заряженных частиц или при взаимодействии космических лучей в атмосфере.

Кроме имеющих спин 1/2 кварков и лептонов, вместе называемых частицами вещества, в таблице приведены частицы со спином 1. Это кванты полей, создаваемых частицами вещества. Из них наиболее известная частица — фотон, квант электромагнитного поля.

Так называемые промежуточные бозоны W+ и W-, обладающие очень большими массами, были недавно обнаружены в экспериментах на встречных p̃ р-пучках при энергиях в несколько сотен ГэВ. Это переносчики слабых взаимодействий между кварками и лептонами. И наконец, глюоны — переносчики сильных взаимодействий между кварками. Как и сами кварки, глюоны не обнаружены в свободном виде, но проявляются на промежуточных стадиях реакций рождения и уничтожения адронов, Недавно были зарегистрированы струи адронов. порожденные глюонами. Поскольку все предсказания теории кварков и глюонов — квантовой хромодинамики — сходятся с опытом, почти нет сомнений в существовании глюонов.

Частица со спином 2 — это гравитон. Его существование вытекает из теории тяготения Эйнштейна, принципов квантовой механики и теории относительности. Обнаружить гравитон экспериментально будет чрезвычайно трудно, поскольку он очень слабо взаимодействует с веществом.

Наконец, в таблице со знаком вопроса приведены частицы со спином 0 (Н-мезоны) и 3/2 (гравитино); они не обнаружены на опыте, но их существование предполагается во многих современных теоретических моделях.