ТУННЕЛЬНЫЙ ЭФФЕКТ

Материал из Юнциклопедии
Перейти к навигации Перейти к поиску

Может ли мяч пролететь сквозь стенку, да так, чтобы и стенка осталась стоять на месте неразрушенной, и энергия мяча при этом не изменилась? Конечно, нет, напрашивается ответ, в жизни такого не бывает. Для того чтобы пролететь сквозь стенку, мяч должен иметь достаточный запас энергии и проломить ее. Точно так же, если нужно, чтобы мяч, находящийся в ложбинке, перекатился через горку, необходимо сообщить ему запас энергии, достаточный для преодоления потенциального барьера — разности потенциальных энергий мяча на вершине и в ложбинке. Тела, движение которых описывается законами классической механики, преодолевают потенциальный барьер только тогда, когда они обладают полной энергией, большей, чем величина максимальной потенциальной энергии.

А как обстоит дело в микромире? Микрочастицы подчиняются законам квантовой механики. Они не двигаются по определенным траекториям, а «размазаны» в пространстве, подобно волне. Эти волновые свойства микрочастиц приводят к неожиданным явлениям, и среди них едва ли не самое удивительное — туннельный эффект.

Оказывается, что в микромире «стенка» может остаться на месте, а электрон как ни в чем не бывало пролетает сквозь нее. Микрочастицы преодолевают потенциальный барьер, даже если их энергия меньше, чем его высота.

Потенциальный барьер в микромире часто создают электрические силы, и впервые с этим явлением столкнулись при облучении атомных ядер заряженными частицами. Положительно заряженной частице, например протону, невыгодно приближаться к ядру, так как, по закону Кулона, между протоном и ядром действуют силы отталкивания. Поэтому для того, чтобы приблизить протон к ядру, надо совершить работу; график потенциальной энергии имеет вид, показанный на рис. 1. Правда, достаточно протону вплотную подойти к ядру (на расстоянии ~ 10-12 см), как тут же вступают в действие мощные ядерные силы притяжения (сильное взаимодействие) и он захватывается ядром. Но ведь надо сначала подойти, преодолеть потенциальный барьер.

И вот оказалось, что протон это делать умеет, даже когда его энергия Е меньше высоты барьера U0. Как всегда в квантовой механике, при этом нельзя сказать с достоверностью, что протон проникнет в ядро. Но имеется определенная вероятность такого туннельного прохождения потенциального барьера. Эта вероятность тем больше, чем меньше разность энергии U0 - Е и чем меньше масса частицы m (причем зависимость вероятности от величины U0 - Е и m очень резкая — экспоненциальная).

Основываясь на идее туннелирования, Д. Кокрофт и Э. Уолтон в 1932 г. в Кавендишской лаборатории открыли искусственное расщепление ядер. Они построили первый ускоритель, и хотя энергия ускоренных протонов была недостаточна для преодоления потенциального барьера, все же протоны благодаря туннельному эффекту проникали в ядро и вызывали ядерную реакцию. Туннельный эффект также объяснил явление альфа-распада.

Туннельный эффект нашел важное применение в физике твердого тела и в электронике.

Представьте себе, что на стеклянную пластинку (подложку) нанесли пленку металла (обычно ее получают, напыляя металл в вакууме). Затем ее окислили, создав на поверхности слой диэлектрика (окисла) толщиной всего в несколько десятков ангстрем. И снова покрыли пленкой металла. В результате получится так называемый «сэндвич» (в буквальном смысле этим английским словом называют два куска хлеба, например, с сыром между ними), или, иначе говоря, туннельный контакт.

Могут ли электроны переходить из одной металлической пленки в другую? Казалось бы, нет — им мешает слой диэлектрика. На рис. 2 приведен график зависимости потенциальной энергии электрона от координаты. В металле электрон движется свободно, и его потенциальная энергия равна нулю. Для выхода в диэлектрик надо совершить работу выхода WВ, которая больше, чем кинетическая (а следовательно, и полная) энергия электрона W3. Поэтому электроны в металлических пленках разделяет потенциальный барьер, высота которого равна WВ - WЭ.

Если бы электроны подчинялись законам классической механики, то такой барьер для них был бы непреодолим. Но вследствие туннельного эффекта с некоторой вероятностью электроны могут проникать через диэлектрик из одной металлической пленки в другую. Поэтому тонкая пленка диэлектрика оказывается проницаемой для электронов — через нее может течь так называемый туннельный ток. Однако суммарный туннельный ток равен нулю: сколько электронов переходит из нижней металлической пленки в верхнюю, столько же в среднем переходит, наоборот, из верхней пленки в нижнюю.

Как же сделать туннельный ток отличным от нуля? Для этого надо нарушить симметрию, например подсоединить металлические пленки к источнику с напряжением U. Тогда пленки будут играть роль обкладок конденсатора, а в слое диэлектрика возникнет электрическое поле. В этом случае электронам из верхней пленки преодолеть барьер легче, чем электронам из нижней пленки. В результате даже при малых напряжениях источника возникает туннельный ток. Туннельные контакты позволяют исследовать свойства электронов в металлах, а также используются в электронике.