КАСАТЕЛЬНАЯ

Материал из Юнциклопедии
Перейти к: навигация, поиск

Понятие касательной - одно из важнейших в математическом анализе. Изучение прямых, касательных к кривым линиям, во многом определило пути развития математики.

С помощью циркуля и линейки нетрудно построить касательную к окружности в данной ее точке. Несколько труднее провести общую касательную к двум окружностям. В Древней Греции умели строить с помощью циркуля и линейки касательные ко всем коническим сечениям: эллипсам, гиперболам и параболам, что свидетельствует о высоком уровне развития геометрии в то время.

Интерес к касательным не ослабевал и у математиков последующих поколений. В XVII в. французские ученые Р. Декарт и П. Ферма исследовали касательные к спиралям и циклоиде. (Заметим, что модель касательной к циклоиде можно наблюдать в дождливую погоду: циклоида-кривая, являющаяся траекторией точки на ободе катящегося колеса (рис. 1). По такой траектории движутся и капли воды, находящиеся на колесе, а оторвавшись от колеса, они продолжают двигаться уже по касательной к циклоиде (а не к окружности - ободу колеса). Такие капли образуют грязную полосу на спине велосипедиста-гонщика, мчащегося по шоссе в сырую погоду).

Р. Декарт на задаче построения касательных к кривым отрабатывал свой аналитический метод в геометрии. Продолжая исследования Декарта, связанные с построением касательных с помощью аналитического метода, Г. В. Лейбниц одновременно с И. Ньютоном пришел к открытию дифференциально-го исчисления, явившемуся революцией в развитии математики. Понятие производной функции тесно связано с построением касательной к графику этой функции: значение производной в некоторой точке есть тангенс угла наклона касательной в этой точке к оси абсцисс.

Как все основные понятия дифференциального исчисления, понятие касательной строго определяется лишь с помощью предельного перехода (см. Предел). Касательная к кривой в точке М определяется как предельное положение секущей MN при приближении точки N по кривой к точке М (рис. 2). Нетрудно понять, что у непрерывных кривых могут быть точки, в которых касательная отсутствует (рис. 3), но чрезвычайно трудно представить себе, что существуют такие непрерывные кривые, которые не имеют касательных ни в одной своей точке.

Первые примеры таких функций были указаны чешским ученым Б. Больцано (1830 г., опубликовано в 1930 г.) и немецким математиком К. Вейерштрассом (1860 г., опубликовано в 1872 г.). Естественно, что функции, графиками которых являются кривые без касательных, не имеют производных ни в одной из своих точек, так как у функции f(x), имеющей в точке х0 производную, касательная к ее графику в этой точке существует и записывается уравнением у = f(x0) + f'(x0)(х — х0).

Понятие касательной применяется и для определения угла между кривыми в точке их пересечения. За такой угол принимается угол между касательными к кривым в этой точке. На рис. 4 изображено два семейства кривых-эллипсы и гиперболы, фокусы которых находятся в заданных точках F1 и F2. Любые две кривые разных семейств здесь пересекаются под прямым углом. Такая картина часто встречается в физике, в частности эти кривые являются линиями равной напряженности и равного потенциала, если в точках F1 и F2 находятся заряды разного знака.

Аналогично касательной к кривой определяется касательная плоскость к поверхности (рис. 5), она играет по отношению к поверхности ту же роль, что и касательная к кривой.