Равновесие механической системы
Равновесием механической системы называют такое её состояние, при котором все точки рассматриваемой системы покоятся по отношению к выбранной системе отсчета.
Проще всего выяснить условия равновесия на примере простейшей механической системы — материальной точки. Согласно первому закону динамики (см. Механика), условием покоя (или равномерного прямолинейного движения) материальной точки в инерциальной системе координат является равенство нулю векторной суммы всех приложенных к ней сил.
При переходе к более сложным механическим системам одного этого условия для их равновесия оказывается недостаточно. Кроме поступательного движения, к которому приводят нескомпенсированные внешние силы, сложная механическая система может совершать вращательное движение или деформироваться. Выясним условия равновесия абсолютно твердого тела — механической системы, состоящей из собрания частиц, взаимные расстояния между которыми не изменяются.
Возможность поступательного движения (с ускорением) механической системы можно устранить так же, как и в случае с материальной точкой, потребовав равенства нулю суммы сил, приложенных ко всем точкам системы. Это и есть первое условие равновесия механической системы.
В нашем случае твердое тело деформироваться не может, поскольку мы условились, что взаимные расстояния между его точками не изменяются. Но в отличие от материальной точки к абсолютно твердому телу можно приложить пару равных и противоположно направленных сил в разных его точках. При этом поскольку сумма этих двух сил равна нулю, то рассматриваемая механическая система поступательного движения совершать не будет. Однако очевидно, что под действием такой пары сил тело начнет вращаться относительно некоторой оси со всевозрастающей угловой скоростью.
Возникновение в рассматриваемой системе вращательного движения обусловлено наличием нескомпенсированных моментов сил. Моментом силы относительно какой‑либо оси называется произведение величины этой силы [math]F[/math] на плечо [math]d,[/math] т. е. на длину перпендикуляра, опущенного из точки [math]O[/math] (см. рис.), через которую проходит ось, на направление силы. Отметим, что момент силы при таком определении — алгебраическая величина: он считается положительным, если сила приводит к вращению против часовой стрелки, и отрицательным — в противном случае. Таким образом, второе условие равновесия твердого тела заключается в требовании равенства нулю суммы моментов всех сил относительно любой оси вращения.
В случае, когда оба найденных условия равновесия выполнены, твердое тело будет пребывать в состоянии покоя, если в момент начала действия сил скорости всех его точек были равны нулю. В противном случае оно будет совершать равномерное движение по инерции.
Рассмотренное определение равновесия механической системы ничего не говорит о том, что произойдет, если система чуть‑чуть выйдет из положения равновесия. При этом имеется три возможности: система вернется в свое прежнее состояние равновесия; система, несмотря на отклонение, не изменит своего состояния равновесия; система выйдет из состояния равновесия. Первый случай называют устойчивым состоянием равновесия, второй — безразличным, третий — неустойчивым. Характер положения равновесия определяется зависимостью потенциальной энергии системы от координат. На рисунке показаны все три типа равновесия на примере тяжелого шарика, находящегося в углублении (устойчивое равновесие), на гладком горизонтальном столе (безразличное), на вершине бугорка (неустойчивое).
Изложенный выше подход к проблеме равновесия механической системы рассматривался учеными еще в древнем мире. Так, закон равновесия рычага (т. е. твердого тела с закрепленной осью вращения) был найден Архимедом в III в. до н. э.
В 1717 г. Иоганн Бернулли разработал совершенно иной подход к нахождению условий равновесия механической системы — метод виртуальных перемещений. В основе его лежит вытекающее из закона сохранения энергии свойство сил реакций связей: при малом отклонении системы от положения равновесия полная работа сил реакций связей равна нулю.
<addc>l</addc>
При решении задач статики (см. Механика) на основании описанных выше условий равновесия существующие в системе связи (опоры, нити, стержни) характеризуются возникающими в них силами реакции. Необходимость учета этих сил при определении условий равновесия в случае систем, состоящих из нескольких тел, приводит к громоздким расчетам. Однако благодаря равенству нулю работы сил реакции связей при малых отклонениях от положения равновесия можно избежать рассмотрения этих сил вообще.
Кроме сил реакции на точки механической системы действуют и внешние силы. Какова их работа при малом отклонении от положения равновесия? Так как система первоначально покоится, то для любого её перемещения необходимо совершить некоторую положительную работу. В принципе эту работу могут совершать как внешние силы, так и силы реакции связей. Но, как мы уже знаем, полная работа сил реакции равна нулю. Поэтому для того, чтобы система вышла из состояния равновесия, суммарная работа внешних сил при любом возможном перемещении должна быть положительной. Следовательно, условие невозможности движения, т. е. условие равновесия, можно сформулировать как требование неположительности полной работы внешних сил при любом возможном перемещении: [math]ΔA≤0.[/math]
Допустим, что при перемещениях точек системы [math]Δ\overrightarrow{γ}_1…\ Δ\overrightarrow{γ}_n[/math] сумма работ внешних сил оказалась равной [math]ΔA1.[/math] А что произойдет, если система совершит перемещения [math]−Δ\overrightarrow{γ}_1,−Δ\overrightarrow{γ}_2,\ …,−Δ\overrightarrow{γ}_n?[/math] Эти перемещения возможны так же, как и первые; однако работа внешних сил теперь изменит знак: [math]ΔA2 =−ΔA1.[/math] Рассуждая аналогично предыдущему случаю, мы придем к выводу, что теперь условие равновесия системы имеет вид: [math]ΔA1≥0,[/math] т. е. работа внешних сил должна быть неотрицательной. Единственная возможность «примирить» два этих почти противоречивых условия — потребовать точного равенства нулю полной работы внешних сил при любом возможном (виртуальном) перемещении системы из положения равновесия: [math]ΔA=0.[/math] Под возможным (виртуальным) перемещением тут подразумевается бесконечно малое мысленное перемещение системы, которое не противоречит наложенным на неё связям.
Итак, условие равновесия механической системы в виде принципа виртуальных перемещений формулируется следующим образом:
«Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ действующих на систему сил при любом возможном перемещении была равна нулю».
С помощью принципа виртуальных перемещений решаются задачи не только статики, но и гидростатики, и электростатики.