Полупроводники, раздел «Физик»

Материал из Юнциклопедии
(перенаправлено с «ПОЛУПРОВОДНИКИ, раздел «Физик»»)
Перейти к: навигация, поиск

Полупроводники — класс веществ, занимающий промежуточное положение между веществами, хорошо проводящими электрический ток (проводники, в основном металлы), и веществами, практически не проводящими электрического тока (изоляторы или диэлектрики).

Для полупроводников характерна сильная зависимость их свойств и характеристик от микроскопических количеств содержащихся в них примесей. Изменяя количество примеси в полупроводнике от десятимиллионных долей процента до 0,1 — 1%, можно изменять их проводимость в миллионы раз. Другое важнейшее свойство полупроводников состоит в том, что электрический ток переносится в них не только отрицательными зарядами — электронами, но и равными им по величине положительными зарядами — дырками.

Если рассматривать идеализированный полупроводниковый кристалл, абсолютно свободный от каких-либо примесей, то его способность проводить электрический ток будет определяться так называемой собственной электропроводностью.

Атомы в кристалле полупроводника связаны между собой с помощью электронов внешней электронной оболочки. При тепловых колебаниях атомов тепловая энергия распределяется между электронами, образующими связи, неравномерно. Отдельные электроны могут получать количество тепловой энергии, достаточное для того, чтобы «оторваться» от своего атома и получить возможность свободно перемещаться в кристалле, т. е. стать потенциальными носителями тока (по-другому можно сказать, что они переходят в зону проводимости, см. Твердое тело.). Такой уход электрона нарушает электрическую нейтральность атома, у него возникает положительный заряд, равный по величине заряду ушедшего электрона. Это вакантное место называют дыркой.

Так как вакантное место может быть занято электроном соседней связи, дырка также может перемещаться внутри кристалла и являться уже положительным носителем тока. Естественно, что электроны и дырки при этих условиях возникают в равных количествах, и электропроводность такого идеального кристалла будет в равной степени определяться как положительными, так и отрицательными зарядами.

Если на место атома основного полупроводника поместить атом примеси, во внешней электронной оболочке которого содержится на один электрон больше, чем у атома основного полупроводника, то такой электрон окажется как бы лишним, ненужным для образования межатомных связей в кристалле и слабо связанным со своим атомом. Достаточно в десятки раз меньшей энергии, чтобы оторвать его от своего атома и превратить в свободный электрон. Такие примеси называют донорными примесями, т. е. отдающими «лишний» электрон. Атом примеси заряжается, разумеется, положительно, но дырки при этом не появляется, так как дыркой может быть только вакансия электрона в незаполненной межатомной связи, а в данном случае все связи заполнены. Этот положительный заряд остается связанным со своим атомом, неподвижным и, следовательно, в процессе электропроводности участия принимать не может.

Введение в полупроводник примесей, внешняя электронная оболочка которых содержит меньшее количество электронов, чем в атомах основного вещества, приводит к появлению незаполненных связей, т. е. дырок. Как было сказано выше, эта вакансия может быть занята электроном из соседней связи, и дырка получает возможность свободного перемещения по кристаллу. Иными словами, движение дырки — это последовательный переход электронов из одной соседней связи в другую. Такие примеси, «принимающие» электрон, называют акцепторными.

С увеличением количества примесей того или иного типа электропроводность кристалла начинает приобретать все более ярко выраженный электронный или дырочный характер. В соответствии с первыми буквами латинских слов negativ и positiv электронную электропроводность называют электропроводностью n-типа, а дырочную — р-типа, отмечая этим, какой тип подвижных носителей заряда для данного полупроводника является основным, а какой — неосновным.

При электропроводности, обусловленной наличием примесей (т. е. примесной), в кристалле по-прежнему остается два типа носителей: основные, появляющиеся главным образом за счет введения в полупроводник примесей, и неосновные, обязанные своим появлением тепловому возбуждению. Следует отметить, что содержание в 1 см3 (концентрация) электронов n и дырок р для данного полупроводника при данной температуре есть величина постоянная:

n•р = const.

Это значит, что, увеличивая за счет введения примесей в несколько раз концентрацию носителей данного типа, мы во столько же раз уменьшаем концентрацию носителей другого типа.

Следующее важное свойство полупроводников, вытекающее из вышеизложенного, — их сильная чувствительность к температуре и облучению. С ростом температуры повышаетс я средняя энергия колебания атомов в кристалле, и все большее количество связей будет подвергаться разрыву. Будут появляться все новые и новые пары электронов и дырок. При достаточно высоких температурах собственная (тепловая) проводимость может сравняться с примесной или даже значительно превзойти ее. Чем выше концентрация примесей, тем при более высоких температурах будет наступать этот эффект.

Разрыв связей может осуществляться также за счет облучения полупроводника, например, светом, если энергия световых квантов достаточна для разрыва связей. Энергия разрыва связей у разных полупроводников различна, поэтому они по-разному реагируют на те или иные участки спектра облучения.

Эти важнейшие свойства полупроводников используются для создания самых различных по своему назначению и областям применения полупроводниковых приборов.

Первым полупроводниковым материалом, нашедшим свое практическое применение, был селен. В настоящее время чаще всего используют кремний, вытеснивший в значительной мере такой полупроводник, как германий. Селен, германий и кремний относятся к так называемым элементарным полупроводникам, т. е. к полупроводникам, являющимся элементами периодической системы Д. И. Менделеева.

Наряду с германием и кремнием все более широкое распространение начинают получать сложные соединения элементов III и V, II и IV, II и VI групп периодической системы, обладающие полупроводниковыми свойствами. Здесь следует упомянуть, например, соединения галлия и мышьяка (арсенид галлия), галлия и фосфора, кадмия, ртути и теллура и т. п. В качестве примесей используют бор, фосфор, индий, мышьяк, сурьму и многие другие элементы, сообщающие полупроводникам необходимые свойства. Типичные значения вводимых в полупроводник примесей заключены между десятыми и стотысячными долями процента.

Получение полупроводниковых кристаллов с правильной кристаллической решеткой (монокристаллов) и заданным содержанием и распределением строго контролируемых примесей представляет собой сложнейший технологический процесс, проводимый в особо чистых условиях с использованием оборудования высокой точности и сложности. Все описанные выше процессы могут быть объяснены также с помощью зонной теории, как это сделано, например, в статье Проводимость.