Окружность и круг

Материал из Юнциклопедии
(перенаправлено с «ОКРУЖНОСТЬ И КРУГ»)
Перейти к: навигация, поиск

Формы круга, окружности мы встречаем повсюду: это и колесо машины, и линия горизонта, и диск Луны. Математики стали заниматься геометрической фигурой — кругом на плоскости — очень давно.

Кругом с центром $O$ и радиусом $R$ называется множество точек плоскости, удаленных от $O$ на расстояние, не большее $R.$ Круг ограничен окружностью, состоящей из точек, удаленных от центра $O$ в точности на расстояние $R.$ Отрезки, соединяющие центр с точками окружности, имеют длину $R$ и также называются радиусами (круга, окружности). Части круга, на которые он делится двумя радиусами, называются круговыми секторами (рис. 1). Хорда — отрезок, соединяющий две точки окружности, — делит круг на два сегмента, а окружность — на две дуги (рис. 2). Перпендикуляр, проведенный из центра к хорде, делит её и стягиваемые ею дуги пополам. Хорда тем длиннее, чем ближе она расположена к центру; самые длинные хорды — хорды, проходящие через центр, — называются диаметрами (круга, окружности).

Если прямая удалена от центра круга на расстояние $d,$ то при $d > R$ она не пересекается с кругом, при $d < R$ пересекается с кругом по хорде и называется секущей, при $d=R$ имеет с кругом и окружностью единственную общую точку и называется касательной. Касательная характеризуется тем, что она перпендикулярна радиусу, проведенному в точку касания. К кругу из точки, лежащей вне его, можно провести две касательные, причем их отрезки от данной точки до точек касания равны.

Дуги окружности, как и углы, можно измерять в градусах и его долях. За градус принимают $1/360$ часть всей окружности. Центральный угол $AOB$ (рис. 3) измеряется тем же числом градусов, что и дуга $AB,$ на которую он опирается; вписанный угол $ACB$ измеряется половиной дуги $AB.$ Если вершина $P$ угла $APB$ лежит внутри круга, то этот угол в градусной мере равен полусумме дуг $AB$ и $A′B′$ (рис. 4, а). Угол с вершиной $P$ вне круга (рис. 4, б), высекающий на окружности дуги $AB$ и $A′B′,$ измеряется полуразностью дуг $A′B′$ и $AB.$ Наконец, угол между касательной и хордой равен половине заключенной между ними дуги окружности (рис. 4, в).

Круг и окружность имеют бесконечное множество осей симметрии.

Из теорем об измерении углов и подобия треугольников следуют две теоремы о пропорциональных отрезках в круге. Теорема о хордах говорит, что если точка $М$ лежит внутри круга, то произведение длин отрезков $AM⋅BM$ проходящих через нее хорд постоянно. На рис. 5, а $AM⋅BM=A′M′⋅B′M.$ Теорема о секущей и касательной (имеются в виду длины отрезков - частей этих прямых) утверждает, что если точка $М$ лежит вне круга, то произведение секущей $МА$ на её внешнюю часть $MB$ тоже неизменно и равно квадрату касательной $MC$ (рис. 5, б).

Еще в древности пытались решить задачи, связанные с кругом, — измерить длину окружности или её дуги, площадь круга или сектора, сегмента. Первая из них имеет чисто «практическое» решение: можно уложить вдоль окружности нить, а потом развернуть её и приложить к линейке или же отметить на окружности точку и «прокатить» её вдоль линейки (можно, наоборот, «обкатить» линейкой окружность). Так или иначе измерения показывали, что отношение длины окружности $L$ к её диаметру $d=2R$ одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой $π$ («пи» — начальная буква греческого слова perimetron, которое и означает «окружность»).

Однако древнегреческих математиков такой эмпирический, опытный подход к определению длины окружности не удовлетворял: окружность — это линия, т.е., по Евклиду, «длина без ширины», а таких нитей не бывает. Если же мы катим окружность по линейке, то возникает вопрос: почему при этом мы получим длину окружности, а не какую‑нибудь другую величину? К тому же такой подход не позволял определить площадь круга.

Выход был найден такой: если рассмотреть вписанные в круг $K$ правильные $n$‑угольники $M_n,$ то при $n,$ стремящемся к бесконечности, $M_n$ в пределе стремятся к $K.$ Поэтому естественно ввести следующие, уже строгие, определения: длина окружности $L$ — это предел последовательности периметров $P_n$ правильных вписанных в окружность $n$‑угольников, а площадь круга $S$ — предел последовательности $S_n$ их площадей. Такой подход принят и в современной математике, причем по отношению не только к окружности и кругу, но и к другим кривым или ограниченным криволинейными контурами областям: вместо правильных многоугольников рассматривают последовательности ломаных с вершинами на кривых или контурах областей, а предел берется при стремлении длины наибольшего звена ломаной к нулю.

Аналогичным образом определяется длина дуги окружности: дуга делится на n равных частей, точки деления соединяются ломаной и длина дуги $L$ полагается равной пределу периметров $l_n$ таких ломаных при $n,$ стремящемся к бесконечности. (Подобно древним грекам, мы не уточняем само понятие предела — оно относится уже не к геометрии и было вполне строго введено лишь в XIX в.)

Из самого определения числа π следует формула для длины окружности:

$L=πd=2πR.$

Для длины дуги можно записать аналогичную формулу: поскольку для двух дуг $Γ$ и $Γ′$ с общим центральным углом из соображений подобия вытекает пропорция $l_n:l′_n=R:R′,$ а из нее — пропорция $l_n:R=l′_n:R′,$ после перехода к пределу мы получаем независимость (от радиуса дуги) отношения $l/R=l′/R′=α.$ Это отношение определяется только центральным углом $AOB$ и называется радианной мерой этого угла и всех отвечающих ему дуг с центром в $O.$ Тем самым получается формула для длины дуги:

$l=αR,$

где $α$ — радианная мера дуги.

Записанные формулы для $L$ и $l$ — это всего лишь переписанные определения или обозначения, но с их помощью получаются уже далекие от просто обозначений формулы для площадей круга и сектора:

$S=πR^2,$ $S=\frac{1}{2}αR^2.$

Для вывода первой формулы достаточно перейти к пределу в формуле для площади вписанного в круг правильного n‑угольника:

$S_n=\frac{1}{2}P_nh_n.$

По определению левая часть стремится к площади круга $S,$ а правая — к числу

$\frac{1}{2}LR=\frac{1}{2}⋅2πR⋅R =πR^2$

(апофема $h_n,$ конечно, стремится к $R$). Совершенно аналогично выводится и формула для площади сектора $s$:

$s=\lim S_n=\lim (\frac{1}{2}l_nh_n)=$ $\frac{1}{2}\lim l_n⋅\lim h_n=$ $\frac{1}{2}lR=$ $\frac{1}{2}αR^2$

($\lim $— читается «предел»). Тем самым решена и задача определения площади сегмента с хордой $AB,$ ибо она представляется как разность или сумма (рис. 1, 2) площадей соответствующих сектора и треугольника $AOB.$

См. также