Геометрия

Материал из Юнциклопедии
(перенаправлено с «ГЕОМЕТРИЯ»)
Перейти к навигации Перейти к поиску

Геометрия - одна из наиболее древних математических наук. Первые геометрические факты мы находим в вавилонских клинописных таблицах и египетских папирусах (III тысячелетие до н.э.), а также в других источниках. Название науки «геометрия»-древнегреческого происхождения. Оно составлено из двух древнегреческих слов ge - «Земля» и metreo - «измеряю».

Возникновение геометрических знаний связано с практической деятельностью людей. Это отразилось и в названиях многих геометрических фигур. Например, название фигуры трапеция происходит от греческого слова trapezion - «столик», от которого произошло также слово «трапеза» и другие родственные слова. Термин «линия» возник от латинского linum- «лен, льняная нить».

Еще в древности геометрия превратилась в дедуктивную, строго логическую науку, построенную на основе системы аксиом (см. Аксиоматика и аксиоматический метод). Она непрерывно развивалась, обогащалась новыми теоремами, идеями, методами. Интересы геометров и направления их научных исследований порою менялись в процессе исторического развития этой науки, поэтому нелегко дать точное и исчерпывающее определение, что такое геометрия сегодня, каков ее предмет, содержание и методы.

В замечательной книге «Диалектика природы» Ф. Энгельс определил геометрию как науку о пространственных формах окружающего нас реального мира, т. е. как часть математики, изучающую свойства пространства. Это философское определение полностью отражало состояние геометрии в то время, когда жил и работал Ф. Энгельс. Но в наше время возникли и оформились новые важные разделы геометрии. Каждый из этих разделов имеет свою специфику, которая уже не всегда укладывается в определение геометрии, данное в прошлом веке Ф. Энгельсом. Крупный советский геометр академик А. Д. Александров, которому принадлежат работы не только по геометрии, но и в области философии математики, расширил рамки энгельсовского определения, сказав, что геометрия изучает пространственные и пространственноподоб-ные формы и отношения реального мира. Что это значит и какое это имеет значение для школьной геометрии, попытаемся раскрыть в этой статье.

В III в. до н. э. древнегреческий ученый Евклид написал книгу под названием «Начала» (см, Евклид и его «Начала»). В этой книге Евклид подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки. Написана она была настолько хорошо, что в течение 2000 лет всюду преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида. Например, таким пособием был учебник А. П. Киселева, по которому советская школа работала до середины этого столетия.

Продуманное и глубоко логическое изложение геометрии, данное в книге Евклида, привело к тому, что математики не мыслили возможности существования геометрии, отличной от евклидовой. Немецкий философ-идеа-лист XVIII в. И. Кант и многие его последователи считали, что понятия и идеи евклидовой геометрии (единственно возможной, чуть ли не божественной) были заложены в человеческое сознание еще до того, как человек научился что-либо осознавать. Происхождение этой мысли Канта становится понятным, если мы проследим процесс возникновения геометрических знаний в сознании ребенка. Дети много тысяч раз видят, например, прототипы прямых линий в жизни: угол дома или обрез книжной страницы, натянутую нитку или луч света, край стола или двери-все это, запечатленное в сознании ребенка, делает его психологически подготовленным к восприятию понятия «прямая». То же относится к прямым углам и перпендикулярам (которые мы видим с детства на каждом шагу), окружностям (колесо, пуговица, солнечный диск, край тарелки или блюдца), параллелограммам и другим фигурам. Отраженные в сознании, эти представления подготавливают восприятие геометрических понятий. Учитель же систематизирует, упорядочивает эти представления и дает школьникам соответствующий термин, завершающий и закрепляющий образование понятия.

Лишь в XIX в. благодаря в первую очередь трудам выдающегося русского математика Н. И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной. Вслед за тем математики создали и исследовали многие различные «геометрии». Особенно большая заслуга в расширении наших представлений о возможных геометрических пространствах принадлежит немецкому математику XIX в. Г. Ф. Б. Риману. Он открыл способ построения бесконечно многих «геометрий», которые локально, «в малом» устроены почти так же, как и евклидова геометрия, но обладают «кривизной», сказывающейся при рассмотрении больших кусков пространства. По преданию, К. Ф. Гаусс, обогативший математику многими замечательными открытиями (в том числе и в области геометрии), ушел после доклада Римана, глубоко задумавшись над ошеломившими его новыми геометрическими идеями.

Интересно проследить связь геометрических идей с современной физикой. Часто идеи, обогащающие математику новыми понятиями и методами, приходят из физики, химии и других разделов естествознания. Типичным примером может служить понятие вектора, пришедшее в математику из механики. Но в отношении неевклидовых геометрий дело обстоит как раз наоборот: созданные внутри математики под воздействием ее внутренних потребностей и ее собственной логики развития, эти новые геометрические понятия проложили пути создания современной физики. В частности, геометрия Лобачевского нашла применение в специальной теории относительности, стала одной из математических основ этой теории, а риманова геометрия служит фундаментом общей эйнштейновской теории относительности. Можно даже сказать, что общая теория относительности - это больше геометрия, чем физика, и здесь обнаруживается влияние идей немецкого математика Д. Гильберта, который сотрудничал с А. Эйнштейном при создании этой теории. Важные приложения имеет риманова геометрия в теории упругости и в других разделах физики и техники.

Нечто похожее произошло и с другим разделом современной геометрии - с так называемым выпуклым анализом. Начала теории выпуклых фигур были заложены в XIX в. немецким математиком Г. Минковским. Несколько красивых теорем, полученных им, привлекли внимание математиков к новой теории. Однако поскольку они не находили применения в других разделах математики, а тем более в естествознании, то в то время создалось впечатление, что Минковский создал очень изящную, но совершенно бесполезную математическую игрушку. Но прошли десятилетия, и совершенно неожиданно теоремы о выпуклых множествах нашли различные применения: сначала в самой математике (при решении геометрических экстремальных задач), а затем в математической экономике, теории управления и других прикладных областях.

В современной геометрии есть и много других направлений. Одни сближают ее с теорией чисел, другие с квантовой физикой, третьи-с математическим анализом. А некоторые разделы современной математики таковы, что трудно сказать, чего в них больше: геометрии, алгебры или анализа.

Геометрия не только обогатилась новыми направлениями, находящимися далеко за пределами той колыбели, из которой она выросла,-евклидовой геометрии. Много нового появилось со времен Евклида и в самой евклидовой геометрии. Еще в XVII в. благодаря работам французского математика и философа Р. Декарта возник метод координат, ознаменовавший собой революционную перестройку всей математики, и в частности геометрии. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так в рамках евклидовой геометрии появилась ее новая ветвь аналитическая геометрия, явившаяся мощным средством исследования геометрических образов. Например, метод координат позволяет быстро и с помощью несложных вычислений вывести основные свойства линий второго порядка (эллипса, гиперболы, параболы). Теоремы об этих линиях, найденные древнегреческим ученым Аполлонием и некогда считавшиеся вершиной геометрии, сейчас с помощью методов аналитической геометрии изучаются в вузах и техникумах.

В работах математиков XIX в. У. Гамильтона, Г. Грассмана и других были введены векторы, которые ранее в трудах Архимеда, Г. Галилея и других корифеев науки имели лишь механический смысл, а теперь приобрели права гражданства в математике. С 60-х гг. нашего столетия векторы заняли прочное место и в школьном курсе геометрии. Применяемые в рамках евклидовой геометрии векторные методы значительно упрощают доказательства многих теорем и решение задач. Например, теорема косинусов, теорема о трех перпендикулярах и другие (которые раньше было доказать довольно трудно) стали легкими упражнениями на применение скалярного произведения векторов. Но роль векторов-не только в упрощении трудных мест школьного курса. Гораздо важнее то, что векторные методы находят сейчас широкие применения в физике, химии, экономике, биологии, не говоря уже о многих разделах современной ма-тема1ики. Так, скалярное произведение вектоpa силы и вектора перемещения есть работа, векторное произведение вектора тока и вектора напряженности магнитного поля есть сила воздействия этого поля на проводник и т.д. Как видите, и здесь геометрия диктовала физике введение новых понятий, а не наоборот. А впоследствии, при рассмотрении многомерных пространств (о которых речь еще впереди), скалярное произведение приобрело еще больший вес и значение и стало важным рабочим аппаратом, применяемым буквально во всех областях математики и ее приложений.

Другим важным обогащением, которым геометрия также обязана XIX в., стало создание теории геометрических преобразований, и в частности движений (перемещений). У Евклида движения неявно присутствовали; например, когда он говорил: «Наложим один треугольник на другой такими-то образом», то речь шла в действительности о применении движения, перемещения треугольника. Но для Евклида движение не было математическим понятием. Создание математической теории движений и осознание их важной роли в геометрии связано с именем немецкого математика XIX-XX вв. Ф. Клейна, который при вступлении на должность профессора по кафедре геометрии в университете г. Эрлангена прочитал лекцию о роли движений в геометрии. Выдвинутая им идея переосмысления всей геометрии на основе теории движений получила название Эрлангенской программы. Идею Клейна можно пояснить следующим образом.

Геометрия изучает те свойства фигур, которые сохраняются при движениях. Иначе говоря, если одна фигура получается из другой движением (такие фигуры называются равными, или конгруэнтными), то у этих фигур одинаковые геометрические свойства. В этом смысле движения составляют основу геометрии. Они обладают тем свойством, что композиция g∘f любых двух движений f и g (т.е. результат их последовательного выполнения) также является движением; кроме того, если f-произвольное движение, то обратное отображение f-1 также является движением. Эти свойства коротко выражают следующим образом: движения образуют группу. Таким образом, группа движений задает, определяет евклидову геометрию. Но группа движений не единственная известная нам группа преобразований. Например, все параллельные переносы образуют группу, все подобные преобразования также образуют группу и т. д. По мысли Клейна, каждая группа преобразований определяет «свою геометрию». Например, можно рассматривать аффинные преобразования, которые каждую прямую взаимно-однозначно отображают на некоторую другую прямую, но при этом могут не сохранять (в отличие от движений) ни расстояний, ни углов, ни площадей. Множество всех аффинных преобразований плоскости (или пространства) представляет собой группу. Эта группа задает некоторую геометрию, которая носит название аффинной геометрии. Групповая точка зрения на геометрию позволяет с единых позиций рассмотреть многие различные геометрии: евклидову, геометрию Лобачевского, аффинную, проективную геометрию и др.

Значение идей Эрлангенской программы Клейна не исчерпывается рамками геометрии. Групповая точка зрения на геометрические свойства .фигур широко используется в физике. Так, русский математик и кристаллограф Е. С. Федоров, используя клейновские идеи, открыл кристаллографические группы, носящие теперь его имя. Они стали в наши дни подлинной научной основой всей кристаллографии. Групповой подход находит важные применения в ядерной физике; принципы симметрии и четности - яркое проявление групповой точки зрения. Основой специальной теории относительности является группа Лоренца; по существу, эта теория представляет собой своеобразную геометрию «четырехмерного пространства-времени», определяемую группой Лоренца. Важные приложения находит групповая точка зрения и в других областях физики, химии.

Влияние группового подхода можно проследить и в школьной геометрии. Каждая фигура F определяет некоторую группу движений; в эту группу входят все те движения, которые переводят фигуру F в себя. Она называется группой самосовмещений фигуры F. Знание группы самосовмещений фигуры F во многом определяет геометрические свойства этой фигуры. Возьмем, например, параллелограмм общего вида, т.е. не являющийся ни прямоугольником, ни ромбом (рис. 1). Существуют два движения, переводящие этот параллелограмм в себя: тождественное отображение е (оставляющее все точки плоскости на месте) и симметрия r относительно точки О, в которой пересекаются диагонали параллелограмма. Других движений плоскости, переводящих параллелограмм F в себя, нет. Таким образом, группа самосовмещений параллелограмма состоит из двух элементов е, r. Из того, что группа самосовмещений параллелограмма содержит центральную симметрию г, вытекают все основные свойства параллелограмма. Например, так как противоположные углы параллелограмма симметричны относительно точки О, то эти углы равны. Из симметричности противоположных сторон параллелограмма вытекает, что эти стороны равны и параллельны, и т.д.

Группа самосовмещений ромба содержит кроме ей r еще две осевые симметрии s1 и s2 относительно прямых, на которых расположены диагонали ромба (рис. 2). Из того, что в этой группе имеются дополнительные (по сравнению с параллелограммом общего вида) движения S1 и s2, вытекает наличие у ромба дополнительных, специфических свойств (помимо свойств, присущих всякому параллелограмму): перпендикулярность диагоналей, совпадение диагоналей с биссектрисами углов и т. д. В качестве еще одного примера отметим, что группа самосовмещений равнобедренного треугольника, не являющегося равносторонним (рис. 3), состоит из двух элементов е, s, где s-осевая симметрия. Из наличия в группе самосовмещений равнобедренного треугольника движения s вытекают основные свойства этого треугольника: равенство углов при основании, совпадение биссектрисы, медианы и высоты, проведенных к основанию, равенство медиан, проведенных к боковым сторонам, и т. д. Свойства правильных многогранников (или других многогранников, обладающих той или иной симметричностью) удобнее всего доказывать, используя группы их самосовмещений. Свойства сферы, цилиндра, конуса также лучше всего выводить с помощью рассмотрения групп самосовмещений этих фигур. И для каждой конкретной геометрической фигуры богатство ее свойств определяется прежде всего ее группой самосовмещений.

Применение движений сближает математику с идеями физики, химии, биологии, техники, соответствует прогрессивным чертам математического осмысления мира.

Итак, XIX в. привнес в евклидову геометрию много нового, и прежде всего векторные методы и групповой подход. Есть и еще одно направление развития геометрии, появившееся в рамках евклидовой геометрии в XIX в.,- многомерные пространства. Возникли они путем обобщения, аналогии с геометрией на плоскости и в трехмерном пространстве. На плоскости каждая точка задается в системе координат двумя числами-координатами этой точки, а в пространстве - тремя координатами. В n-мерном же пространстве точка задается п координатами, т.е. записывается в виде A (x1, х2, ..., хn), где х1, х2, .... , хn - произвольные действительные числа (координаты точки А). На плоскости система координат имеет две оси, в пространстве -три, а в n-мерном пространстве система координат содержит п осей, причем каждые две из этих осей перпендикулярны друг другу! Конечно, такие пространства существуют лишь в воображении математиков и тех специалистов из других областей знания, которые применяют эти математические абстракции. Ведь реальное пространство, в котором мы живем, математически хорошо описывается трехмерным пространством (евклидовым или римановым, но именно трехмерным). Увидеть-в буквальном, физическом смысле этого слова-фигуры в четырехмерном пространстве (а тем более в пространствах большего числа измерений) не в состоянии никто, даже самый гениальный математик; их можно видеть только мысленным взором.

Человек, который впервые слышит о четырехмерном пространстве, готов возразить: «Но ведь такого же не бывает, не может быть четырех прямых, которые друг другу перпендикулярны !». Есть и другие парадоксы четвертого измерения. Если, например, на плоскости имеется кольцо (оболочка), а внутри — кружок, то, как бы мы ни двигали этот кружок по плоскости, вынуть его из этой оболочки, не разрывая ее, невозможно. Но стоит только выйти в третье измерение, и кружок легко вынуть из кольца, подняв его вверх, над плоскостью. Аналогично дело обстоит и в пространстве. Если имеется сфера (оболочка), внутри которой заключен шарик, то, не прорывая оболочку, невозможно вынуть из нее этот шарик. Но если бы существовало четвертое измерение, то можно было бы «поднять» шарик над трехмерным пространством в направлении четвертого измерения, а затем положить его снова в трехмерное пространство, но уже вне оболочки. И то, что это сделать никому не удается, приводят как довод против существования четвертого измерения. Довод ошибочен, так как в нем спутаны два вопроса.

Первый вопрос: имеется ли в реальном пространстве четвертое измерение? Ответ на этот вопрос отрицателен.

Второй вопрос: можно ли рассматривать четырехмерное пространство абстрактно, математически? Ответ утвердителен.

Нет ничего нелогичного или противоречивого в том, чтобы рассматривать четверки чисел (х1, х2, х3, х4), исследовать свойства этих «четырехмерных точек», составлять из них фигуры, доказывать теоремы, постепенно строя таким образом геометрию четырехмерного (или, вообще, n-мерного) пространства. Но математическая непротиворечивость n-мерной геометрии еще недостаточна для суждения о ценности этой теории. В чем же состоит польза многомерных пространств? Где они применяются? Зачем понадобилось расширять представления о пространстве от реального трехмерного мира до столь далеких абстракций, которые нелегко и не сразу укладываются в сознании?

Для ответа на эти вопросы рассмотрим два примера, которые подведут нас к n-мерной геометрии.

Пример 1. Сумма n чисел равна единице. Каковы должны быть эти числа, чтобы сумма их квадратов была наименьшей?

Решение. Получим ответ на поставленный вопрос геометрическим путем, рассматривая сначала случай n = 2, затем n = 3, а потом обсудим ситуацию при n > 3.

Итак, пусть сначала n = 2. Иначе говоря, рассматриваются числа х, у, удовлетворяющие условию х + у = 1, и требуется найти, в каком случае сумма квадратов х2 + у2 будет наименьшей.

Уравнение х + у = 1 определяет на координатной плоскости прямую l (рис. 4). Рассмотрим окружность S с центром в начале координат, которая касается этой прямой (точка А). Если точка М(х, у) прямой l отлична от А, то она лежит вне окружности S и потому |ОМ| больше радиуса r этой окружности, т. е. х2 + у2 > r2. Если же М = А, то сумма х2 + у2 равна r2, т. е. именно для точки А эта сумма принимает наименьшее значение. Точка А имеет координаты х = у = 1/2; это и есть решение поставленной алгебраической задачи (при n = 2).

Пусть теперь n = 3. Уравнение х + у + z = 1 определяет в пространстве плоскость α. Рассмотрим сферу S с центром в начале О, касающуюся этой плоскости в некоторой точке А (рис. 5). Для любой точки M ∉ α, отличной от А, ее расстояние от точки О больше радиуса г сферы S, |ОМ|2 > r2, и потому х2 + у2 + + z2 > r2, а при М = А имеем х2 + у2 + z2 = r2. Таким образом, именно для точки А сумма х2 + у2 + z2 принимает наименьшее значение. Точка А имеет равные координаты: х = у = z (поскольку при повороте пространства, переставляющем оси координат: х → у; y → z, z → х, и плоскость α, и сфера S переходят в себя, а потому их общая точка остается неподвижной). А так как х + у + z = 1, то точка А имеет координаты x = y = z = 1/3; это и есть решение поставленной задачи (для n = 3).

Рассмотрим, наконец, произвольное n; рассуждения будем вести в n-мерном пространстве, точками которого являются последовательности (х1, х2, ..., хn), состоящие из n действительных чисел. Уравнение х1 + х2 + ... хn = 1 определяет в этом пространстве «плоскость» α, имеющую размерность n — 1 (например, при n = 3, т. е. в трехмерном пространстве, такое уравнение определяет плоскость размерности 2, т.е. на единицу меньшей размерности, чем все пространство). Математики называют плоскости, имеющие размерность n - 1, гиперплоскостями в п-мерном пространстве. Рассмотрим сферу S с центром в начале координат О, касающуюся гиперплоскости α в некоторой точке А. Все точки гиперплоскости α, кроме А, лежат вне сферы S, т.е. находятся от начала координат О на расстоянии, большем, чем радиус r сферы S, а точка А находится от О на расстоянии, равном r. Следовательно, сумма х12 + х22 + ... + хn2 принимает в точке А наименьшее значение по сравнению со всеми другими точками гиперплоскости α. Заметим теперь, что все координаты точки А равны между собой: x1 — х2 — ... — Хn (поскольку поворот пространства, переставляющий оси x1 → х2, ..., хn-1 → хn, хn → X1, переводит гиперплоскость α в себя и сферу S тоже в себя, а потому оставляет точку А неподвижной), откуда х1 = х2 = ... = хn = 1/1. Итак, при x1 + х2 + ... + хn = 1 сумма квадратов х12 + х22 + ... + хn2 принимает наименьшее значение для х1 = х2 = ... = хn = 1/n.

Разумеется, это геометрическое решение читатель может признать корректным лишь в случае, если он уже владеет понятиями n-мерной геометрии, но характер этого решения и польза n-мерной геометрической интерпретации для рассмотренной алгебраической задачи очевидны.

Пример 2. На три завода З1, З2, З3 (рис. 6) нужно завезти сырье одинакового вида, которое хранится на двух складах С1, С2 в соответствии с данными, указанными в таблице.

Наличие сырья | Потребность в сырье

C1 | С2 | З1 | З2 | З3

20т | 25т | 10т | 15т | 20т

Требуется найти наиболее выгодный вариант перевозок, т.е. вариант, для которого общее количество тонно-километров будет наименьшим.

Решение. Обозначим через х и у количество сырья, которое нужно вывезти со склада С1 соответственно на заводы З1, З2. Тогда со второго склада нужно довезти на эти заводы 10-х и 15-у тонн сырья. Так как общее количество имеющегося на складах сырья совпадает с потребностью заводов, т.е. все сырье должно быть вывезено со складов на заводы, то после обеспечения заводов З1 и З2 оставшееся на складах сырье полностью вывозится на завод З3, т.е. со склада С1 на завод З3 вывозится 20 — х — у, а со склада С2 25 — (10 — х) — (15 — у) = х + у тонн. Учитывая расстояния (рис. 6), находим общее число тонно-километров:

5х + 7у + 10(20 - х - у) + 3(10 - х) + 4(15 - у) + 6(х + у) = 290 - 2х - у.

Заметим теперь, что все величины, выражающие количество перевозимого по разным дорогам сырья, неотрицательны: х ≥ 0, у ≥ 0, 20 - х - у ≥ 0, 10 - х ≥ 0, 15-у ≥ 0, х + у ≥ 0. Каждое из этих неравенств определяет в системе координат х, у полуплоскость, а система всех неравенств определяет пересечение этих полуплоскостей, т. е. выпуклый многоугольник Q (рис. 7). Заметим, что последнее неравенство можно отбросить: оно является следствием первых двух.

Таким образом, задача о нахождении наиболее выгодного варианта перевозок сводится математически к нахождению точки М(х, у) многоугольника Q, в которой функция 290 — 2х — у достигает наименьшего значения. Вместо этой функции можно рассматривать функцию - 2х — у. Действительно, если будет найдено наименьшее значение функции - 2х — у на многоугольнике Q, то, прибавив к этому значению 290, получим наименьшее значение функции 290 - 2х — у.

На рис. 8 показано, что наименьшее значение линейной функции —2х — у, рассматриваемой на многоугольнике Q, достигается в вершине С. Иначе говоря, наиболее выгодный вариант перевозок соответствует точке С(10; 10), т.е. х = 10, у = 10. Общее количество тонно-километров для этих значений х, у равно 290 — 2•10 — 10 = 260. Как видим, геометрическая модель позволила полностью решить поставленную задачу.

В рассмотренной задаче все объемы перевозок со складов на заводы удалось выразить через две переменные х, у. Это позволило дать геометрическую интерпретацию получившейся системы неравенств на координатной плоскости. Допустим, однако, что при тех же двух складах число заводов равно четырем с потребностью в сырье соответственно 8, 10, 12 и 15 т. Тогда нужно будет ввести три переменные х, у, z, обозначающие количество сырья, вывозимого со склада Сх на первые три завода. Если задать расстояния от складов до заводов, то можно будет составить выражение для общего числа тонно-киломе-тров. Можно написать и неравенства, выражающие неотрицательность количества сырья, вывозимого со складов на заводы. Теперь эти неравенства будут зависеть от трех переменных х, у, z. Каждое из этих неравенств задает полупространство, а система всех неравенств определяет пересечение полупространств, т. е. выпуклый многогранник в трехмерном пространстве. Таким образом, для четырех заводов задача о перевозке сырья будет математически формулироваться как задача о наименьшем значении линейной функции на трехмерном выпуклом многограннике.

Для двух складов и пяти заводов (при сохранении того условия, что все сырье должно быть вывезено полностью) потребуются уже четыре переменные, обозначающие количество сырья, вывозимого со склада С1 на первые четыре завода. Теперь мы будем иметь неравенства с четырьмя переменными, и для получения геометрической интерпретации потребуется четырехмерное пространство, а при большем числе складов и заводов-пространства еще большей размерности.

К нахождению наибольших значений линейных функций на выпуклых многогранниках приводят и другие практические задачи, на первый взгляд никакого отношения к многогранникам не имеющие. Сюда относятся не только задачи о нахождении наиболее выгодных вариантов перевозок, но также задачи о наиболее выгодных способах раскроя материала, наиболее эффективных режимах работы предприятий, задачи о составлении производственных планов и т.п. Такие задачи объединяются новым научным направлением, получившим название линейное программирование. Тот факт, что эти задачи решаются геометрически с помощью нахождения наименьших или наибольших значений линейных функций на многогранниках (причем, как правило, в пространствах, имеющих размерность, большую трех), был впервые подмечен академиком Л. В. Канторовичем. Необходимость рассмотрения n-мерных пространств при n > 3 диктуется также математическими задачами физики, химии, биологии и других областей знания. Таким образом, хотя пространственные свойства окружающего мира хорошо описываются геометрическим трехмерным пространством, потребности практической деятельности человека приводят к. необходимости рассмотрения пространств любой размерности n.

Теперь мы можем вернуться к вопросу о том, что такое геометрия. Многомерные пространства, несомненно, относятся к области геометрии, поскольку в них математики рассматривают плоскости, прямые, векторы, углы, расстояния, скалярное произведение, перпендикулярность и т.д., т.е. подлинно геометрические понятия. Многомерные пространства и имеющиеся в них гиперплоскости, многогранники и т.п. нельзя назвать отражением пространственных форм реального мира. При всей практической значимости задач о раскрое материала, транспортных задач и т.д. порождаемые ими понятия многомерной геометрии являются лишь «пространственноподобными»; они похожи на то, что мы видим в реальном пространстве, но представляют собой следующую, более высокую ступень абстракции от пространственных форм реального трехмерного мира.

Понятия и факты геометрии постоянно применяются при решении практических задач. И дело не только в том, что, решая задачи по алгебре, математическому анализу или другим областям математики, мы часто делаем геометрические чертежи или используем формулы и теоремы геометрии. Гораздо важнее то, что, сопоставив алгебраические или иные формулы с геометрическими фактами, мы часто можем «увидеть» геометрически решение задачи и найти такие пути рассуждений, предугадать которые, глядя «чисто алгебраически» на нагромождение формул, просто не представляется возможным. Два приведенных выше примера иллюстрируют это. Вообще, характерной чертой современного развития математики является то, что геометрия все больше приобретает роль метода мышления, метода осмысления и организации математической информации буквально во всех областях математики и ее приложений.